Using Law of Sines on the outer triangle
\( \frac{\sin 60^\circ}{a}=\frac{\sin 10^\circ}{210} \)
\( a= \frac{210\sin 60^\circ}{\sin 10^\circ} \)
Using right triangle trigonometry on the inner right triangle
\( \sin 70^\circ = \frac{h}{a} \)
\( h = a \sin 70^\circ \)
Combining the two
\( h=\frac{210 \left ( \sin 60^\circ \right ) \left ( \sin 70^\circ \right ) }{\sin 10^\circ} \)